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INFRARED M(LTIPHOTON DISSOCIATION OF THE NITROBENZENE CATION

MEHDI MOINI and JOHN R. EYLER

Department of Chemistry, University of Florida, Gainesville, FL 32611

ABSTRACT

Infrared multiphoton dissociation (IRMPD) of nitrobenzene cations has

been shown to proceed via three pathways of ca. 1-2 eV activation energy to

produce C6H50, C5H5
+, and NO+ ions. Observation of these three fragment ions

ind not C6H5 , which has approximately the same appearance energy, suggests

that they are produced from high vibrational levels of the ground electronic

state of the cation, while the C6H5
+ either has a higher appearance energy

than previously reported or is produced by dissociation from an isolated

electronic state. To explain all aspects of the observed formation of C5 H5

and C6H50
+ fragment ions from nitrobenzene cations by IRMPD two different

dissociation pathways leading to C6 H5 O+ have been postulated. One produces -
stable C6 H5O

+ ions and one leads to unstable C6H5
O+ which further dissociates

to C5H5
+.
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INTRODUCTION

The nitrobenzene molecular cation has been the subject of extensive

*. studies in recent years. In fact, Porter et al. [1] have used nitrobenzene as

.an example to show various ways in which a contemporary mass spectrometer can

be utilized to obtain a wealth of information about a molecular species. An

understanding of the photochemistry of this cation has been facilitated by a

number of investigations of the photoelectron spectrum of the parent neutral

[2-6]. Stepwise and direct photoionization (PI) of nitrobenzene have been

studied using pulsed lasers and photoionization mass spectrometry [7]. The

*" ionization energy (IE) of the parent ion, the appearance energy (AE), and

relative yields of various fragments have been measured. The IE of C6H5NO2

was reported to be 9.87 eV and the AE of C6H5
o' and C6H5

+ to be 10.95 and

11.15 eV, respectively. Based on the shape of the photoionization efficiency

curve and the photoelectron spectrum it was concluded [7] that the main

contribution to formation of the two ionic fragments of nitrobenzene is made

,* by electronic excited states formed by detachment of an electron from non-

bonding orbitals of the nitro group.

Laser photodissociation studies of the nitrobenzene cation [8-10] showed

no C6H50 peak (corresponding to loss of NO from C6H5NO2
+) but the C6H5

+ peak

(due to loss of NO2 ) was very pronounced. However, fragmentation of colli-

sionally activated nitrobenzene ions showed a different pattern (11] with

peaks resulting from both the loss of NO and NO2 observed (indicating that in

this process the ions acquire a range of excitation energies).

Photoelectron photoion coincidence (PEPICO) spectrometry studies of the

dissociation dynamics of energy-selected nitrobenzene cations have been pub-

lished by two groups [12, 13]. The appearance energies reported by Panczel

and Baer [12] for C6H5+ and C6H5O+ agree with the previous PI study (7] within

J,
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experimental error. Additional values of AE's for C5H5
+ , C4H3+, and NO+ were

reported as 11.30, 11.40, and 11.04 eV, respectively. Based on their results,

the authors concluded that part of the NO+ and all of the C6 H5O+ products are

formed by dissociation from the ground electronic state of C6 H5 NO2 + . On the

other hand, it was argued that dissociation to produce C6 H5
+ takes place from

an excited electronic state, following removal of a bonding electron from the

C-N bond upon ionization of the nitrobenzene neutral.

The AE's reported by Nishimura, et al. [13] for C6H5O
+, C6H5

+, C5H5
+,

C4H3
+, C3H3

+, and NO+ were 10.98, 11.08, 11.08, 15.66, 12.63, and 10.89 re-

spectively. Based on their results these authors concluded that formation of

C6H5
O+ and NO+ from the nitrobenzene ion proceeds via rate - determining tight

transition states whereas near threshold the formation of NO+ is probably pre-

ceeded by nitro-nitrite isomerization. They also concluded that all aspects

of nitrobenzene ion dissociation can be explained adequately by statistical

theories in spite of the complexity of the reaction dynamics.

From the data given above, it can be seen that the AE's for most

nitrobenzene fragments lie within 2 eV of the molecule's IE. Inspection of

the infrared spectrum of neutral nitrobenzene [14] revealed several bands in

the 10.6 U region, so there was some possibility that the parent ion might

absorb in this region as well. Successful attempts at using infrared

multiphoton dissociation (IRMPD) to induce fragmentations requiring 1-2 eV of

internal energy in nitrogen- and oxygen-containing hydrocarbon ions have

recently been reported [15, 16] from this laboratory. The controlled nature

of the IRMPD process usually guarantees that only a few fragment ions are

formed, corresponding to the lowest activation energy pathway for dissociation

(17]. For positive ions, only high vibrational levels of the ground

electronic state, and not excited electronic states, have been accessed by

. .- / . . * S•. -,-.S .;. . W', . .. .-.. *. .-..-. - . -
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this technique. The IRMPD of the nitrobenzene cation was thus studied in

order to investigate its fragmentation mechanism and to determine which

fragment ions were produced from the ground electronic state.

EXPERIMENTAL

Nitrobenzene cations were produced by electron impact in a Fourier trans-

form ion cyclotron resonance (FTICR) mass spectrometer [18], with a nitroben-

zene pressure of 3 X 10- 7 torr and an electron beam pulse of 15 ms duration.

The ionizing electron energy was set to ca. 10 eV to guarantee that only the

ground electronic state of the nitrobenzene parent ion was populated. This

was monitored by observing the very low abundance of C6H5O
+ ions (the fragment

ions of lowest appearance energy) formed by electron impact on the

nitrobenzene neutral. (Due to the ca. 1 eV spread in electron energy, it was

impossible to eliminate C6H5O
+ entirely without reducing the intensity of all

ions to unacceptably low values. In order to investigate only the

fragmentation of parent ions with low internal energy, this fragment ion was

ejected from the cell before photodissociation). Nitrobenzene was purchased

commercially and used without further purification except for repetitive

*freeze-pump-thaw cycles. No impurities were detected in wide mass range FTICR

spectra. Laser irradiation was carried out using previously reported (16]

instrument modifications.

RESULTS AND DISCUSSION

Nitrobenzene ions were trapped in the FTICR analyzer cell and subjected

to gated irradiation from a continuous wave (cw) infrared laser [19] with a

wavelength of 10.28 U. Results for ions trapped for 300 ms without and with

laser irradiation are shown in Figures la and ib, respectively. The two peaks

in Figure la with m/z 107 and m/z 93 are the result of ion/molecule reactions

of the parent ion with nitrobenzene neutral and represent loss of 0 and NO,
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respectively. (The peak at m/z 61.5 is the first overtone of the m/z 123 ion

frequency, and not a doubly charged ion.) However, as can be seen in Figure

lb, IRMPD resulted in production of C6H5
O + (m/z 93) as the most abundant

fragment ion, but also some C5H5
+ (m/z 65) and NO* (m/z 30). The intensity of

C6H5NO+ (m/z 107) was essentially the same with and without laser irradiation,

indicating that this ion is produced solely by an ion/molecule reaction.

Ejection of this ion from the cell during the irradiation period had almost no

effect on other fragments, indicating that it does not undergo IRMPD. No

C6H5
+ (m/z 77) peak was observed, although this ion has an AE which is the

same as [13] or even 0.15 eV lower than [12] C5HO.

The IRMPD results suggest that the mechanism of formation of C6 H5O
+ and

NO+ is different from that of C6H5
+ , i.e. the former ions are formed from dis-

sociation of C6H5NO2
+ ions which are in high vibrational levels of the ground

electronic state. This is in agreement with the conclusions of one PEPICO

study [12], and also suggests that an excited electronic state (leading to

C6H5
+ ) was accessed in the earlier [8-10] visible laser photodissociation

studies.

Production of C5H5
+, as observed in Figure Ib, is a very interesting

case. When C6H50
+ was ejected during the course of laser irradiation no C5H5

+

was produced, indicating that C6H50+ is the precursor of SHs+ by some mecha-

nism, dissociative or reactive. However, increased irradiation time of either

the parent ion or of C6H.O
+ which was itself produced by IRMPD from the parent

did not increase the relative intensity of the C5H5
+ fragment significantly.

Thus the remaining C6H5
O + ions do not absorb ir radiation. Also, no C5H5

+ was

observed when C6H5O
+, which was formed by IRMPD, was allowed to react with

background nitrobenzene molecules, eliminating the possibility of an

ion/molecule formation mechanism.

%7]
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The above observations suggest that ir laser irradiation of the nitroben-

zene cation produces two di'ferent C6H5
O + ions, a long-lived (T - 100 US)

unstable ion which further dissociates to C5H5
+ and a stable C6H50

+ ion which

does not dissociate. Support for this hypothesis may found in earlier

metastable ion kinetic energy spectroscopy (MIKES) studies [20] of the

metastable loss of NO from nitrobenzene to produce C6H50+. Two competitive

unimolecular processes of approximately equal importance were postulated: one

involving a three-centered cyclic transition state and the other involving

oxygen rearrangement to the ortho position. The first process was postulated

to involve a "tight" complex in which the ring and nitro group are in

orthogonal planes, bonded in a spiro configuration. In this mechanism

coupling of the degrees of freedom of the two parts of the molecule is very

ineffective and the aryloxy cation is formed with a large kinetic energy

release and relatively little internal energy. Stable C6H50
+ ions formed in

this manner could account for the m/z 93 peak seen in Fig. lb.

The second dissociation process, involving oxygen rearrangement to the

ortho position, was postulated [20] to take place via a "loose" complex with

an observed lower kinetic energy release and more internal energy remaining in

the C6H50
+ daughter ions. This excess internal energy is apparently just suf-

ficient to permit further dissociation to C5H5+, but with a lifetime of ca.

100 us since that is the necessary time for ejection in the FTICR experi-

ment. Such a long lifetime for dissociation is not unreasonable given the

fact that IRMPD occurs when there is just sufficient energy to overcome the

barrier to dissociation, leading to even longer lifetimes than those common

for metastable ions in conventional mass spectrometry where a range of inter-

nal energies are imparted to the parents by electron impact ionization.

Observation of NO+ and C5H5
+ ions of comparable intensities in Figure lb

* • * t'- . . .. .,'' * -r. • . . .. s.. * ,.. -. .,....-, -' '.-. .,-'.. . . .... .- ' -- • .
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suggests that the activation energies for their formation are similar. This

in turn implies that the more recent [13] PEPICO value of 11.08 eV for the AE

of C Hs+ should be preferred over the earlier [12] value of 11.30 eV. The

former value is closer to the NO+ AE of ca. 11.0 (10.89 [13] or 11.04 [12])

eV, and if the latter value were correct one would expect little or no C5H5 +

formation via IRMPD due to the 0.3-0.4 eV difference in activation energies

for dissociation.

Dissociation channels leading to formation of NO
+ + C6H50 or NO + C6H5

O+

should be similar, basically depending on which fragment retains the positive

charge. NO+ ions corresponding to both low and high components of kinetic

energy release (KER) have been observed in PEPICO studies [13] and similar

results were discussed above for C6H50
+ ions in MIKES experiments [20].

However, no C6 H5 0+ corresponding to low KER was seen in PEPICO experiments.

Failure to observe this component in PEPICO experiments could be due to a

higher kinetic shift in these spectrometers and/or to greater sensitivity of

the lower KER component of C6 H5 O+ to fragmentation due to excess internal

energy. Long ion residence times lead to extremely small expected kinetic

shifts in the FTICR spectrometer.

Recently it has been shown [21-23] that disubstituted halo-benzene ions

readily isomerize before fraymentation. The results of the present study

suggest the importance of isomerization process in the nitrobenzene cation

dissociation. Consideration of possible rearrangements in the more recent

PEPICO study [13] facilated interpretation of the photoelectron photoion

coincidence results on nitrobenzene. On the other hand the earlier PEPICO

work [12] did not rely on isomerization mechanisms in its explanations, while

the present study indicates they may be important in C6H50+ formation. The

isolated state assumption for C6H+ formation by Panczel and Baer [12] seems to

*J~~~~~~.q~~~~~ 5 ;~~~V ~ ~ ~ ~. &V~%4.~
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be more consistent with the IRMPD results and reported AE's for C6 H+.

CONCLUSION

Production of C6 H5 O
+ and NO+ by infrared multiphoton dissociation of the

nitrobenzene cation indicates that these ions are produced from high vibra-

tional levels of the ground electronic state of the ion. The mechanism of

formation of these ions is different from that of C6 H5
+ , which is either

produced directly from an excited electronic state or from the ground state

via a pathway whose activation energy exceeds that of C6 H50+, NO
+ and C5 H5 by

> ca. 0.2 eV, which is inconsistent with existing appearance energies. The

results of this study also suggest that two different types of C6 H5
O + ions are

produced by IRMPD, one stable with respect to dissociation and the other

undergoing further fragmentation to give C5 H5
+ on a >100 Ws time scale.
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~ FIGURE CAPTION

* Figure 1. a. Mass spectrum resulting from reaction of nitrobenzene parent

ions with nitrobenzene neutrals for 300 ms. Ionizing electron

energy was ca. 10 eV and nitrobenzene pressure was 3 X 1-

torr. No laser irradiation.

b. Same conditions as in a. except laser irradiation of ca. 10

W/cm2 during the 300 ms reaction period. Peaks normalized to

C 6H 5NO+ intensity from spectrum a. The small peak at m/z 116

is due to an indene impurity.
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